Relationship between tissue stiffness and degree of mineralization of developing trabecular bone.
نویسندگان
چکیده
It is unknown how the degree of mineralization of bone in individual trabecular elements is related to the corresponding mechanical properties at the bone tissue level. Understanding this relationship is important for the comprehension of the mechanical behavior of bone at both the apparent and tissue level. The purpose of the present study was, therefore, to determine the tissue stiffness and degree of mineralization of the trabecular bone tissue and to establish a relationship between these two variables. A second goal was to assess the change in this relation during development. Mandibular condylar specimens of four fetal and four newborn pigs were used. The tissue stiffness was measured using nanoindentation. A pair of indents was made in the cores of 15 trabecular elements per specimen. Subsequently, the degree of mineralization of these locations was determined from microcomputed tomography. The mean tissue stiffness was 11.2 GPa (+/-0.5 GPa) in the fetal group and 12.0 GPa (+/-0.8 GPa) in the newborn group, which was not significantly different. The degree of mineralization of the fetal trabecular cores was 744 mg/cm3 (+/-28 mg/cm3). The one in the newborn bone measured 719 mg/cm(3) (+/-34 mg/cm3). Again, the difference was statistically insignificant. A significant relationship between tissue stiffness and degree of mineralization was obtained for fetal (R = 0.42, p < 0.001) and newborn (R = 0.72, p < 0.001) groups. It was concluded that woven bone tissue in fetal and newborn trabecular cores resembles adult trabecular bone in terms of tissue properties and is strongly correlated with degree of mineralization.
منابع مشابه
Intratrabecular distribution of tissue stiffness and mineralization in developing trabecular bone.
The purpose of this study was to investigate the relation between bone tissue stiffness and degree of mineralization distribution and to examine possible changes during prenatal development. Understanding this may provide insight into adaptation processes and into deformation mechanisms of the bone microstructure. Mandibular condyles from four fetal and newborn pigs were used. Tissue stiffness ...
متن کاملBiomechanical consequences of developmental changes in trabecular architecture and mineralization of the pig mandibular condyle.
The purpose of the present study was to examine the changes in apparent mechanical properties of trabecular bone in the mandibular condyle during fetal development and to investigate the contributions of altering architecture, and degree and distribution of mineralization to this change. Three-dimensional, high-resolution micro-computed tomography (microCT) reconstructions were utilized to asse...
متن کاملVariations in mineralization affect the stress and strain distributions in cortical and trabecular bone.
The mechanical properties of bone depend largely on its degree and distribution of mineralization. The present study analyzes the effect of an inhomogeneous distribution of mineralization on the stress and strain distributions in the human mandibular condyle during static clenching. A condyle was scanned with a micro-CT scanner to create a finite element model. For every voxel the degree of min...
متن کاملPorosity of human mandibular condylar bone.
Quantification of porosity and degree of mineralization of bone facilitates a better understanding of the possible effects of adaptive bone remodelling and the possible consequences for its mechanical properties. The present study set out first to give a three-dimensional description of the cortical canalicular network in the human mandibular condyle, in order to obtain more information about t...
متن کاملArchitecture and mineralization of developing trabecular bone in the pig mandibular condyle.
Architecture and mineralization are important determinants of trabecular bone quality. To date, no quantitative information is available on changes in trabecular bone architecture and mineralization of newly formed bone during development. Three-dimensional architecture and mineralization of the trabecular bone in the mandibular condyle from six pigs of different developmental ages were investi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of biomedical materials research. Part A
دوره 84 2 شماره
صفحات -
تاریخ انتشار 2008